Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4938, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582829

RESUMO

Swift diagnosis and treatment play a decisive role in the clinical outcome of patients with acute ischemic stroke (AIS), and computer-aided diagnosis (CAD) systems can accelerate the underlying diagnostic processes. Here, we developed an artificial neural network (ANN) which allows automated detection of abnormal vessel findings without any a-priori restrictions and in <2 minutes. Pseudo-prospective external validation was performed in consecutive patients with suspected AIS from 4 different hospitals during a 6-month timeframe and demonstrated high sensitivity (≥87%) and negative predictive value (≥93%). Benchmarking against two CE- and FDA-approved software solutions showed significantly higher performance for our ANN with improvements of 25-45% for sensitivity and 4-11% for NPV (p ≤ 0.003 each). We provide an imaging platform ( https://stroke.neuroAI-HD.org ) for online processing of medical imaging data with the developed ANN, including provisions for data crowdsourcing, which will allow continuous refinements and serve as a blueprint to build robust and generalizable AI algorithms.


Assuntos
Aprendizado Profundo , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/diagnóstico por imagem , Estudos Prospectivos , Angiografia por Tomografia Computadorizada/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Angiografia , Estudos Retrospectivos
2.
Healthcare (Basel) ; 10(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36360507

RESUMO

Automated image analysis plays an increasing role in radiology in detecting and quantifying image features outside of the perception of human eyes. Common AI-based approaches address a single medical problem, although patients often present with multiple interacting, frequently subclinical medical conditions. A holistic imaging diagnostics tool based on artificial intelligence (AI) has the potential of providing an overview of multi-system comorbidities within a single workflow. An interdisciplinary, multicentric team of medical experts and computer scientists designed a pipeline, comprising AI-based tools for the automated detection, quantification and characterization of the most common pulmonary, metabolic, cardiovascular and musculoskeletal comorbidities in chest computed tomography (CT). To provide a comprehensive evaluation of each patient, a multidimensional workflow was established with algorithms operating synchronously on a decentralized Joined Imaging Platform (JIP). The results of each patient are transferred to a dedicated database and summarized as a structured report with reference to available reference values and annotated sample images of detected pathologies. Hence, this tool allows for the comprehensive, large-scale analysis of imaging-biomarkers of comorbidities in chest CT, first in science and then in clinical routine. Moreover, this tool accommodates the quantitative analysis and classification of each pathology, providing integral diagnostic and prognostic value, and subsequently leading to improved preventive patient care and further possibilities for future studies.

3.
Radiol Artif Intell ; 4(5): e220055, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36204531

RESUMO

Purpose: To train a deep natural language processing (NLP) model, using data mined structured oncology reports (SOR), for rapid tumor response category (TRC) classification from free-text oncology reports (FTOR) and to compare its performance with human readers and conventional NLP algorithms. Materials and Methods: In this retrospective study, databases of three independent radiology departments were queried for SOR and FTOR dated from March 2018 to August 2021. An automated data mining and curation pipeline was developed to extract Response Evaluation Criteria in Solid Tumors-related TRCs for SOR for ground truth definition. The deep NLP bidirectional encoder representations from transformers (BERT) model and three feature-rich algorithms were trained on SOR to predict TRCs in FTOR. Models' F1 scores were compared against scores of radiologists, medical students, and radiology technologist students. Lexical and semantic analyses were conducted to investigate human and model performance on FTOR. Results: Oncologic findings and TRCs were accurately mined from 9653 of 12 833 (75.2%) queried SOR, yielding oncology reports from 10 455 patients (mean age, 60 years ± 14 [SD]; 5303 women) who met inclusion criteria. On 802 FTOR in the test set, BERT achieved better TRC classification results (F1, 0.70; 95% CI: 0.68, 0.73) than the best-performing reference linear support vector classifier (F1, 0.63; 95% CI: 0.61, 0.66) and technologist students (F1, 0.65; 95% CI: 0.63, 0.67), had similar performance to medical students (F1, 0.73; 95% CI: 0.72, 0.75), but was inferior to radiologists (F1, 0.79; 95% CI: 0.78, 0.81). Lexical complexity and semantic ambiguities in FTOR influenced human and model performance, revealing maximum F1 score drops of -0.17 and -0.19, respectively. Conclusion: The developed deep NLP model reached the performance level of medical students but not radiologists in curating oncologic outcomes from radiology FTOR.Keywords: Neural Networks, Computer Applications-Detection/Diagnosis, Oncology, Research Design, Staging, Tumor Response, Comparative Studies, Decision Analysis, Experimental Investigations, Observer Performance, Outcomes Analysis Supplemental material is available for this article. © RSNA, 2022.

4.
JMIR Med Inform ; 9(2): e22795, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33533728

RESUMO

BACKGROUND: Natural Language Understanding enables automatic extraction of relevant information from clinical text data, which are acquired every day in hospitals. In 2018, the language model Bidirectional Encoder Representations from Transformers (BERT) was introduced, generating new state-of-the-art results on several downstream tasks. The National NLP Clinical Challenges (n2c2) is an initiative that strives to tackle such downstream tasks on domain-specific clinical data. In this paper, we present the results of our participation in the 2019 n2c2 and related work completed thereafter. OBJECTIVE: The objective of this study was to optimally leverage BERT for the task of assessing the semantic textual similarity of clinical text data. METHODS: We used BERT as an initial baseline and analyzed the results, which we used as a starting point to develop 3 different approaches where we (1) added additional, handcrafted sentence similarity features to the classifier token of BERT and combined the results with more features in multiple regression estimators, (2) incorporated a built-in ensembling method, M-Heads, into BERT by duplicating the regression head and applying an adapted training strategy to facilitate the focus of the heads on different input patterns of the medical sentences, and (3) developed a graph-based similarity approach for medications, which allows extrapolating similarities across known entities from the training set. The approaches were evaluated with the Pearson correlation coefficient between the predicted scores and ground truth of the official training and test dataset. RESULTS: We improved the performance of BERT on the test dataset from a Pearson correlation coefficient of 0.859 to 0.883 using a combination of the M-Heads method and the graph-based similarity approach. We also show differences between the test and training dataset and how the two datasets influenced the results. CONCLUSIONS: We found that using a graph-based similarity approach has the potential to extrapolate domain specific knowledge to unseen sentences. We observed that it is easily possible to obtain deceptive results from the test dataset, especially when the distribution of the data samples is different between training and test datasets.

5.
JCO Clin Cancer Inform ; 4: 1027-1038, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33166197

RESUMO

PURPOSE: Image analysis is one of the most promising applications of artificial intelligence (AI) in health care, potentially improving prediction, diagnosis, and treatment of diseases. Although scientific advances in this area critically depend on the accessibility of large-volume and high-quality data, sharing data between institutions faces various ethical and legal constraints as well as organizational and technical obstacles. METHODS: The Joint Imaging Platform (JIP) of the German Cancer Consortium (DKTK) addresses these issues by providing federated data analysis technology in a secure and compliant way. Using the JIP, medical image data remain in the originator institutions, but analysis and AI algorithms are shared and jointly used. Common standards and interfaces to local systems ensure permanent data sovereignty of participating institutions. RESULTS: The JIP is established in the radiology and nuclear medicine departments of 10 university hospitals in Germany (DKTK partner sites). In multiple complementary use cases, we show that the platform fulfills all relevant requirements to serve as a foundation for multicenter medical imaging trials and research on large cohorts, including the harmonization and integration of data, interactive analysis, automatic analysis, federated machine learning, and extensibility and maintenance processes, which are elementary for the sustainability of such a platform. CONCLUSION: The results demonstrate the feasibility of using the JIP as a federated data analytics platform in heterogeneous clinical information technology and software landscapes, solving an important bottleneck for the application of AI to large-scale clinical imaging data.


Assuntos
Inteligência Artificial , Radiologia , Ciência de Dados , Atenção à Saúde , Alemanha , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...